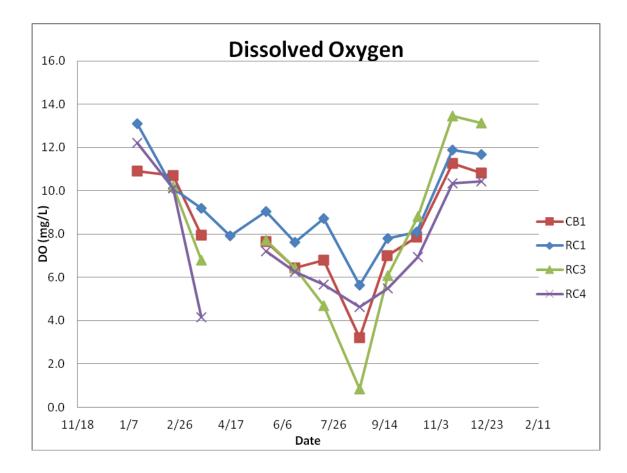


Interpretation Guide to Reedy Creek Monitoring Data 2011 Edition

Field Parameters

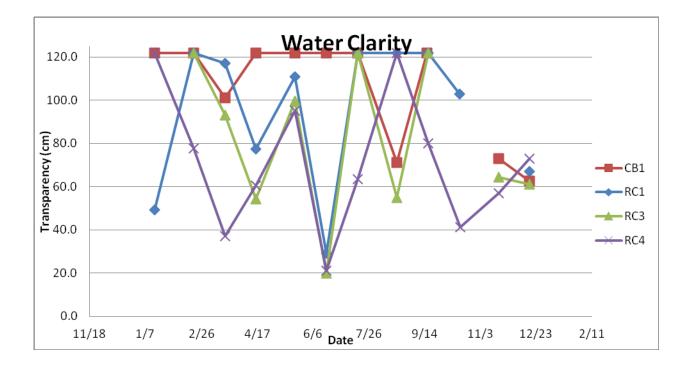
Temperature – The state water quality standard for temperature is 32° C. Readings higher than 32° C are a violation of state water quality standards. Given the time that we sample, it is unlikely that we would detect violations. However, given the extent of unshaded concrete channels which absorb a lot of heat, it is certainly possible that segments of Reedy Creek exceed the temperature standard during summer afternoons. It would be interesting to check this out. There were no temperature violations in 2011.

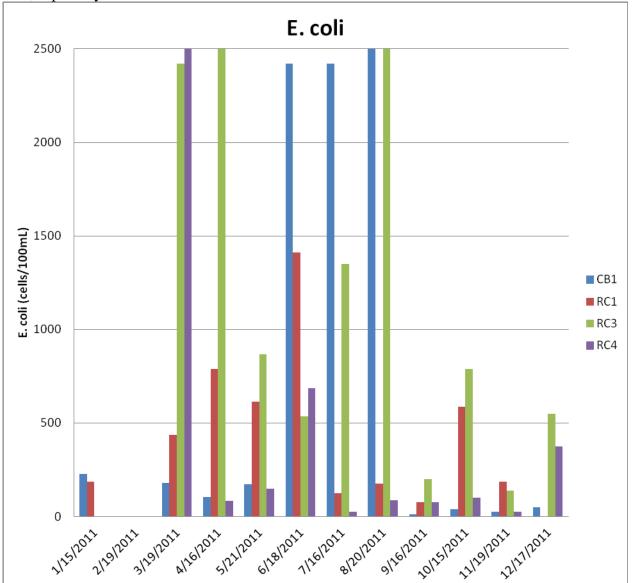

pH – State water quality standards define an acceptable pH range as 6.0 - 9.0. However, this is a <u>very</u> <u>broad</u> standard that applies to most state waters regardless of local geology which can have a dramatic influence on stream pH. In general, Piedmont streams like Reedy Creek have a pH between 6.5 and 7.0 under most conditions. One exception is that the pH will go down following a rain event. In part, this is due to the fact that rain is naturally a little bit acidic plus it often carries air pollution from the burning of fossil fuels creating "acid rain". All data in 2011 was within the acceptable range.

Acknowledgements: This guide was compiled by Bill Shanabruch, Reedy Creek Coalition, and Anna Mathis, Alliance for the Chesapeake Bay. Many thanks to our volunteer monitors for field work and sample collection and to City of Richmond Department of Public Utilities for their in-kind lab analysis services. The Alliance for the Chesapeake Bay trains the volunteers on monitoring procedures and provides database management and quality assurance support.

Dissolved Oxygen – The state water quality standard for dissolved oxygen for most state waters is 4.0 milligrams/liter. A dissolved oxygen reading of less than 4.0 mg/L is a violation. In general, DO is not a problem in the colder months because:

- 1) Cold water holds more oxygen than warm water
- 2) Colder temperatures slow down biological processes such as decomposition which use up oxygen
- 3) Stream flows are higher which helps put oxygen back in the water

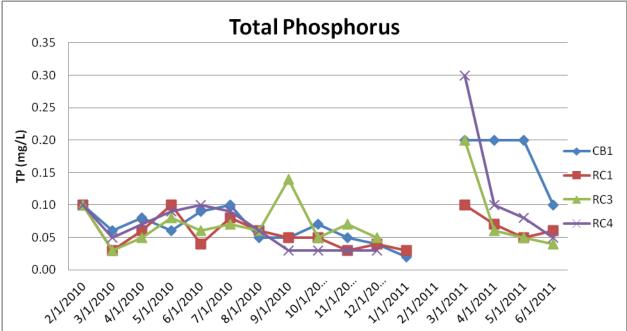

The most likely time to see a DO violation is during the summer months when water is warm and stream flow is sluggish. And the most likely time of day to find a violation is at dawn. During the day, algae are pumping oxygen into the water as a result of photosynthesis. But at night, photosynthesis stops and all organisms are using up oxygen (even the algae). So here is additional motivation to stick with early morning sampling! It doesn't just "beat the heat", it increases the chance of detecting DO issues.


Turbidity - Turbidity is the measure of the relative clarity of water; the greater the turbidity, the murkier the water. Material that becomes mixed and suspended in water will reduce water clarity. During periods of heavy rain, run-off from land can carry large amounts of silt into streams. Silt is often related to nutrient enrichment of a river because nutrients such as phosphorus cling to soil particles. In addition, unprotected shoreline will erode and contribute to suspended particles to the water.

Turbidity affects fish and aquatic life by interfering with the penetration of sunlight. If suspended particles "block out" light, photosynthesis, which produces oxygen for fish and aquatic life, will be reduced. Suspended sediment may also affect aquatic life by clogging gills and reducing visibility needed to find food.

There is no state standard for turbidity.

Escherichia coli – The standard for *E. coli* is 235 colony-forming units/100 milliliters of sample water. (A colony-forming unit is simply one bacterial cell and 100 ml is about 3 fluid ounces or less than $\frac{1}{2}$ cup.) As you look at the data, you will see that most of our stations exceed this critical value most of the time, especially in warmer months.



Laboratory Analytes

Nutrients – Some General Comments first. Virginia does not currently have any relevant numerical standards for nutrients in surface waters. There is a drinking water standard for nitrate (10 mg/L) to protect human health; but this value is far too high to protect aquatic resources. (It is one thing to drink some water; but it much different to actually live in it.) There is also a very complicated set of standards for ammonia in surface water to guard against direct toxicity from ammonia. But it is not really meant to protect against indirect effects of ammonia as a nutrient.

One of the reasons that Virginia has not yet developed nutrient standards is because it is so difficult. There are a lot of variables (stream shading, flow, geology, aquatic community interactions) which can influence what nutrient level is too high for a particular stream. On the other hand, there is a wealth of data that clearly shows that aquatic communities are negatively impacted as nutrient levels increase. The guidelines below are based primarily on data collected in Virginia streams.

Total Phosphorous – Phosphorous is usually the most important nutrient in fresh waters like Reedy Creek. In general, total phosphorous (TP) levels between 0.05 and 0.10 mg/L are cause for concern. Virginia streams that have not been impacted much by human activities usually have TP concentrations of 0.02 mg/L or less. TP concentrations greater than 0.1 mg/L are cause for serious concern. Streams with TP concentrations above 0.1 mg/L usually show clear signs of impairment to the biological community.

Ammonia – Ammonia levels are usually fairly low in streams because ammonia tends to be converted to nitrate and other forms of nitrogen rather quickly. In a stream such as Reedy Creek, high ammonia levels could result from sewer line leaks/overflows, an illicit discharge, or fertilizer runoff. Healthy streams generally have ammonia levels under 0.1 mg/L. Ammonia concentrations above 0.3 mg/L are higher then desirable and concentrations above 0.5 mg/L are cause for serious concern.

Nitrate – Nitrate is often the most common form of nitrogen in streams. Nitrate concentrations above 1.0 mg/L are cause for concern in Piedmont streams like Reedy Creek.

Total Kejldahl (TKN) – TKN is a measure of organic nitrogen in a stream. TKN values above 0.6 mg/L are cause for concern. Anything above 1.0 mg/L is definitely bad and in Reedy Creek would probably be due to a sanitary sewer issue.

Total Nitrogen (TN) – Total nitrogen can be obtained by summing the values for nitrate and TKN. TN values above 2.0 mg/L are associated with impairment to aquatic life.

Total Suspended Solids (TSS) – TSS is a measure of sediment suspended in the water column. This value is highly variable depending on recent precipitation, stream flow, and other variables. There are no state water quality standards and there is even disagreement among water quality professionals over how useful this parameter is when trying to evaluate sediment issues. However, it is good to be collecting this baseline data for Reedy Creek in case someone figures out a good way to use it!!